archived/sagemaker-huggingface-tgi-hosting-examples/sagemaker-huggingface-tgi-hosting-examples.ipynb (2,888 lines of code) (raw):
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---\n",
"\n",
"This notebook's CI test result for us-west-2 is as follows. CI test results in other regions can be found at the end of the notebook.\n",
"\n",
"\n",
"\n",
"---\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "rEJBSTyZIrIb"
},
"source": [
"# Hugging Face Large Model Inference - TGI"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "kTCFado4IrIc"
},
"source": [
"This notebook demonstrates how to deploy common large language models such as flan-t5-xxl and LLaMa, using Hugging Face Text Generation Inference (TGI) Deep Learning Container on Amazon SageMaker.\n",
"\n",
"TGI is an open source, high performance inference library that can be used to deploy large language models from Hugging Face’s repository in minutes. The library includes advanced functionality like model parallelism and dynamic batching to simplify production inference with large language models like flan-t5-xxl, LLaMa, StableLM, and GPT-NeoX. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Install the SageMaker Python SDK\n",
"\n",
"First, make sure that the latest version of SageMaker SDK is installed."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true,
"tags": []
},
"outputs": [],
"source": [
"%pip install \"sagemaker>=2.163.0\" boto3 --upgrade --quiet"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Setup account and role\n",
"\n",
"Then, we import the SageMaker python SDK and instantiate a `sagemaker_session` which we use to determine the current region and execution role."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import sagemaker\n",
"from sagemaker.huggingface import HuggingFaceModel, get_huggingface_llm_image_uri\n",
"import time\n",
"from datetime import datetime, timedelta\n",
"import boto3\n",
"import json\n",
"\n",
"sagemaker_session = sagemaker.Session()\n",
"region = sagemaker_session.boto_region_name\n",
"role = sagemaker.get_execution_role()\n",
"bucket = sagemaker_session.default_bucket()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Retrieve the LLM Image URI\n",
"\n",
"We use the helper function `get_huggingface_llm_image_uri()` to generate the appropriate image URI for the Hugging Face Large Language Model (LLM) inference.\n",
"\n",
"The function takes a required parameter `backend` and several optional parameters. The `backend` specifies the type of backend to use for the model, the values can be \"lmi\" and \"huggingface\". The \"lmi\" stands for SageMaker LMI inference backend, and \"huggingface\" refers to using Hugging Face TGI inference backend."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"image_uri = get_huggingface_llm_image_uri(backend=\"huggingface\", region=region, version='0.8.2') # or lmi\n",
"image_uri"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create the Hugging Face Model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next we configure the `model` object by specifying a model configured in `models.json` for the managed TGI container. This file contains the information for a number of environment variables including the `HF_MODEL_ID` which corresponds to the model from the HuggingFace Hub that will be deployed, and the `HF_TASK` which configures the inference task to be performed by the model.\n",
"\n",
"The file also defines `SM_NUM_GPUS`, which specifies the tensor parallelism degree of the model. Tensor parallelism can be used to split the model across multiple GPUs, which is necessary when working with LLMs that are too big for a single GPU. Here, you should set `SM_NUM_GPUS` to the number of available GPUs on your selected instance type. \n",
"\n",
"Additionally, we could reduce the memory footprint of the model by setting the `HF_MODEL_QUANTIZE` environment variable to `bitsandbytes` or `gptq`.\n",
"\n",
"Note that for downloading `starcoder` model, we need to set the `HUGGING_FACE_HUB_TOKEN` environment variable. We can refer to [User access tokens](https://huggingface.co/docs/hub/security-tokens) to create a access tokens."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"with open(\"models.json\") as f:\n",
" _MODEL_CONFIG_ = json.load(f)\n",
" f.close()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"%pip install ipywidgets --quiet"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import ipywidgets as widgets\n",
"\n",
"model_dropdown = widgets.Dropdown(\n",
" options=_MODEL_CONFIG_.keys()\n",
")\n",
"model_dropdown"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"model_id = model_dropdown.value\n",
"print(f\"The selected model is: {model_id}\")\n",
"if \"HUGGING_FACE_HUB_TOKEN\" in _MODEL_CONFIG_[model_id]['env'].keys():\n",
" token = input(f\"This model requires a token from the HuggingFace Hub. Please enter it:\")\n",
" _MODEL_CONFIG_[model_id]['env']['HUGGING_FACE_HUB_TOKEN'] = token"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"_MODEL_CONFIG_[model_id]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"model_name = f\"{model_id}-\" + time.strftime(\"%Y-%m-%d-%H-%M-%S\", time.gmtime())\n",
"model = HuggingFaceModel(name=model_name, \n",
" env=_MODEL_CONFIG_[model_id]['env'], \n",
" role=role, \n",
" image_uri=image_uri)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Creating a SageMaker Endpoint"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next we deploy the model by invoking the `deploy()` function. Here we use an appropriate instance based on the selected LLM which come with one or more NVIDIA A10 GPUs. The `SM_NUM_GPUS` environment variable will indicate how many GPU devices the model will be sharded across."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"predictor = model.deploy(\n",
" initial_instance_count=1, \n",
" instance_type=_MODEL_CONFIG_[model_id]['instance type'], \n",
" endpoint_name=model_name,\n",
" container_startup_health_check_timeout=500,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Running Inference"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Once the endpoint is up and running, we can evaluate the model using the `predict()` function."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"print(f\"Sample input: {_MODEL_CONFIG_[model_id]['sample_input']}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"input_data = {\n",
" \"inputs\": _MODEL_CONFIG_[model_id]['sample_input'],\n",
" \"parameters\": {\"do_sample\": True, \"max_new_tokens\": 100, \"temperature\": 0.7, \"watermark\": True},\n",
"}\n",
"\n",
"output = predictor.predict(input_data)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"print(output[0]['generated_text'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Use Inference Recommender to help decide the instance type and understand the model performance\n",
"\n",
"uncomment below cell if you would like to provide your own input for the load testing. Otherwise, directly run the cell after to use the prepared `payload.json` file as the input."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# # Serializing json\n",
"# json_object = json.dumps(input_data, indent=4)\n",
" \n",
"# # Writing to sample.json\n",
"# with open(\"payload.json\", \"w\") as outfile:\n",
"# outfile.write(json_object)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!tar -czvf payload.tar.gz payload.json"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"s3_location = f\"s3://{bucket}/sagemaker/InferenceRecommender/{model_id}\"\n",
"payload_tar_url = sagemaker.s3.S3Uploader.upload(\"payload.tar.gz\", s3_location)\n",
"print(payload_tar_url)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Before running the Inference Recommender job, make sure that you have enough account service quota to test the job. You can specify the isntance types by setting up the `SupportedInstanceTypes` in the `ContainerConfig` of the inference job configuration. If you don't set this parameter, SageMaker Inference Recommender will run the job against all the gpu instances that has 1 gpu core, such as ml.g4dn.2xlarge, ml.g5.xlarge, ml.g5.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.p2.xlarge, ml.g4dn.16xlarge, ml.g4dn.xlarge."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"job_name = f\"{model_id}-\" + time.strftime(\"%Y-%m-%d-%H-%M-%S\", time.gmtime())\n",
"sm_client = boto3.client('sagemaker')\n",
"\n",
"inference_job_config = {\n",
" 'ContainerConfig': {\n",
" 'Domain': 'NATURAL_LANGUAGE_PROCESSING',\n",
" 'Task': 'TEXT_GENERATION',\n",
" 'PayloadConfig': {\n",
" 'SamplePayloadUrl': payload_tar_url,\n",
" 'SupportedContentTypes': [\"application/json\"],\n",
" },\n",
" 'SupportedEndpointType': 'RealTime'\n",
" },\n",
" 'ModelName': model_name\n",
" }\n",
"\n",
"if 'SM_NUM_GPUS' in _MODEL_CONFIG_[model_id]['env'].keys() and _MODEL_CONFIG_[model_id]['env']['SM_NUM_GPUS'] == '4':\n",
" inference_job_config['ContainerConfig']['SupportedInstanceTypes'] = ['ml.g5.12xlarge', 'ml.g4dn.12xlarge', 'ml.g5.24xlarge',]\n",
"\n",
"response = sm_client.create_inference_recommendations_job(\n",
" JobName=job_name,\n",
" JobType='Default',\n",
" RoleArn=role,\n",
" InputConfig=inference_job_config\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note:\n",
"If the above code fails, please install the latest boto3 and restart your kernel."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"inference_job_config"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true,
"tags": []
},
"outputs": [],
"source": [
"describe_IR_job_response = sm_client.describe_inference_recommendations_job(JobName=job_name)\n",
"\n",
"while describe_IR_job_response[\"Status\"] in [\"IN_PROGRESS\", \"PENDING\"]:\n",
" describe_IR_job_response = sm_client.describe_inference_recommendations_job(JobName=job_name)\n",
" print(describe_IR_job_response[\"Status\"])\n",
" time.sleep(15)\n",
" \n",
"print(f'Inference Recommender job {job_name} has finished with status {describe_IR_job_response[\"Status\"]}.')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, let's use the inference recommender job results to calculate the approximate invocation cost for the LLM endpoint."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"describe_IR_job_response = sm_client.describe_inference_recommendations_job(JobName=job_name)\n",
"failed = False\n",
"try:\n",
" print(describe_IR_job_response['InferenceRecommendations'])\n",
"except:\n",
" if \"FailureReason\" in describe_IR_job_response.keys():\n",
" print(f\"Inference recommender job failed with reason: {describe_IR_job_response['FailureReason']}\")\n",
" failed = True"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The inference recomender job reports the below metrics: \n",
"- 'ModelLatency'\n",
"- 'CostPerInference'\n",
"- 'CostPerHour'\n",
"- 'MaxInvocations' per minute\n",
"\n",
"and more.\n",
"\n",
"Note that the sample json input file consists of 6,200 characters, which is around 1550 tokens per invocation (1 token is approximately 4 characters). To calculate the approximate cost per 1K tokens, you can do the inference many times (with average payload size) and get the best token/s you get through the experiment (different instance types can result in different throughput, model latency, and cost). Then we will calculate the per token per second invocation price and multiply by 1,000. You can also use per invocation cost divide by the tokens per invocation and multiply by 1,000. The calculated price should be similar. SageMaker also supports auto-scaling to scale your endpoint out/in to save cost based on the invocation traffic pattern.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"if not failed:\n",
" for job_index, _ in enumerate(describe_IR_job_response['InferenceRecommendations']):\n",
" metrics = describe_IR_job_response['InferenceRecommendations'][job_index]['Metrics']\n",
" instance_type = describe_IR_job_response['InferenceRecommendations'][job_index]['EndpointConfiguration']['InstanceType']\n",
" token_per_sec = round(metrics['MaxInvocations']*1550/60, 2)\n",
" cost_per_sec = round(metrics['CostPerHour']/3600, 5)\n",
" cost_per_1k_token = round(cost_per_sec/token_per_sec * 1000, 5)\n",
" print(f\"According to the Inference recommender job, the corresponding metrices for hosting the model on instance type {instance_type} are as below:\")\n",
" print(f\"Max tokens per second is about {token_per_sec}\")\n",
" print(f\"Cost per second is about ${cost_per_sec}\")\n",
" print(f\"Cost per 1k tokens is about ${cost_per_1k_token}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Cleaning Up"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"After you've finished using the endpoint, it's important to delete it to avoid incurring unnecessary costs."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"predictor.delete_model()\n",
"predictor.delete_endpoint()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Conclusion\n",
"\n",
"In this tutorial, we used a TGI container to deploy large language models on an appropriate SageMaker instance. With Hugging Face's Text Generation Inference and SageMaker Hosting, you can easily host large language models like GPT-NeoX, flan-t5-xxl, and LLaMa."
]
},
{
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"## Notebook CI Test Results\n",
"\n",
"This notebook was tested in multiple regions. The test results are as follows, except for us-west-2 which is shown at the top of the notebook.\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
}
],
"metadata": {
"availableInstances": [
{
"_defaultOrder": 0,
"_isFastLaunch": true,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 4,
"name": "ml.t3.medium",
"vcpuNum": 2
},
{
"_defaultOrder": 1,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 8,
"name": "ml.t3.large",
"vcpuNum": 2
},
{
"_defaultOrder": 2,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 16,
"name": "ml.t3.xlarge",
"vcpuNum": 4
},
{
"_defaultOrder": 3,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 32,
"name": "ml.t3.2xlarge",
"vcpuNum": 8
},
{
"_defaultOrder": 4,
"_isFastLaunch": true,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 8,
"name": "ml.m5.large",
"vcpuNum": 2
},
{
"_defaultOrder": 5,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 16,
"name": "ml.m5.xlarge",
"vcpuNum": 4
},
{
"_defaultOrder": 6,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 32,
"name": "ml.m5.2xlarge",
"vcpuNum": 8
},
{
"_defaultOrder": 7,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 64,
"name": "ml.m5.4xlarge",
"vcpuNum": 16
},
{
"_defaultOrder": 8,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 128,
"name": "ml.m5.8xlarge",
"vcpuNum": 32
},
{
"_defaultOrder": 9,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 192,
"name": "ml.m5.12xlarge",
"vcpuNum": 48
},
{
"_defaultOrder": 10,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 256,
"name": "ml.m5.16xlarge",
"vcpuNum": 64
},
{
"_defaultOrder": 11,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 384,
"name": "ml.m5.24xlarge",
"vcpuNum": 96
},
{
"_defaultOrder": 12,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 8,
"name": "ml.m5d.large",
"vcpuNum": 2
},
{
"_defaultOrder": 13,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 16,
"name": "ml.m5d.xlarge",
"vcpuNum": 4
},
{
"_defaultOrder": 14,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 32,
"name": "ml.m5d.2xlarge",
"vcpuNum": 8
},
{
"_defaultOrder": 15,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 64,
"name": "ml.m5d.4xlarge",
"vcpuNum": 16
},
{
"_defaultOrder": 16,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 128,
"name": "ml.m5d.8xlarge",
"vcpuNum": 32
},
{
"_defaultOrder": 17,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 192,
"name": "ml.m5d.12xlarge",
"vcpuNum": 48
},
{
"_defaultOrder": 18,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 256,
"name": "ml.m5d.16xlarge",
"vcpuNum": 64
},
{
"_defaultOrder": 19,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 384,
"name": "ml.m5d.24xlarge",
"vcpuNum": 96
},
{
"_defaultOrder": 20,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": true,
"memoryGiB": 0,
"name": "ml.geospatial.interactive",
"supportedImageNames": [
"sagemaker-geospatial-v1-0"
],
"vcpuNum": 0
},
{
"_defaultOrder": 21,
"_isFastLaunch": true,
"category": "Compute optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 4,
"name": "ml.c5.large",
"vcpuNum": 2
},
{
"_defaultOrder": 22,
"_isFastLaunch": false,
"category": "Compute optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 8,
"name": "ml.c5.xlarge",
"vcpuNum": 4
},
{
"_defaultOrder": 23,
"_isFastLaunch": false,
"category": "Compute optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 16,
"name": "ml.c5.2xlarge",
"vcpuNum": 8
},
{
"_defaultOrder": 24,
"_isFastLaunch": false,
"category": "Compute optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 32,
"name": "ml.c5.4xlarge",
"vcpuNum": 16
},
{
"_defaultOrder": 25,
"_isFastLaunch": false,
"category": "Compute optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 72,
"name": "ml.c5.9xlarge",
"vcpuNum": 36
},
{
"_defaultOrder": 26,
"_isFastLaunch": false,
"category": "Compute optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 96,
"name": "ml.c5.12xlarge",
"vcpuNum": 48
},
{
"_defaultOrder": 27,
"_isFastLaunch": false,
"category": "Compute optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 144,
"name": "ml.c5.18xlarge",
"vcpuNum": 72
},
{
"_defaultOrder": 28,
"_isFastLaunch": false,
"category": "Compute optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 192,
"name": "ml.c5.24xlarge",
"vcpuNum": 96
},
{
"_defaultOrder": 29,
"_isFastLaunch": true,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 16,
"name": "ml.g4dn.xlarge",
"vcpuNum": 4
},
{
"_defaultOrder": 30,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 32,
"name": "ml.g4dn.2xlarge",
"vcpuNum": 8
},
{
"_defaultOrder": 31,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 64,
"name": "ml.g4dn.4xlarge",
"vcpuNum": 16
},
{
"_defaultOrder": 32,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 128,
"name": "ml.g4dn.8xlarge",
"vcpuNum": 32
},
{
"_defaultOrder": 33,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 4,
"hideHardwareSpecs": false,
"memoryGiB": 192,
"name": "ml.g4dn.12xlarge",
"vcpuNum": 48
},
{
"_defaultOrder": 34,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 256,
"name": "ml.g4dn.16xlarge",
"vcpuNum": 64
},
{
"_defaultOrder": 35,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 61,
"name": "ml.p3.2xlarge",
"vcpuNum": 8
},
{
"_defaultOrder": 36,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 4,
"hideHardwareSpecs": false,
"memoryGiB": 244,
"name": "ml.p3.8xlarge",
"vcpuNum": 32
},
{
"_defaultOrder": 37,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 8,
"hideHardwareSpecs": false,
"memoryGiB": 488,
"name": "ml.p3.16xlarge",
"vcpuNum": 64
},
{
"_defaultOrder": 38,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 8,
"hideHardwareSpecs": false,
"memoryGiB": 768,
"name": "ml.p3dn.24xlarge",
"vcpuNum": 96
},
{
"_defaultOrder": 39,
"_isFastLaunch": false,
"category": "Memory Optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 16,
"name": "ml.r5.large",
"vcpuNum": 2
},
{
"_defaultOrder": 40,
"_isFastLaunch": false,
"category": "Memory Optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 32,
"name": "ml.r5.xlarge",
"vcpuNum": 4
},
{
"_defaultOrder": 41,
"_isFastLaunch": false,
"category": "Memory Optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 64,
"name": "ml.r5.2xlarge",
"vcpuNum": 8
},
{
"_defaultOrder": 42,
"_isFastLaunch": false,
"category": "Memory Optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 128,
"name": "ml.r5.4xlarge",
"vcpuNum": 16
},
{
"_defaultOrder": 43,
"_isFastLaunch": false,
"category": "Memory Optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 256,
"name": "ml.r5.8xlarge",
"vcpuNum": 32
},
{
"_defaultOrder": 44,
"_isFastLaunch": false,
"category": "Memory Optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 384,
"name": "ml.r5.12xlarge",
"vcpuNum": 48
},
{
"_defaultOrder": 45,
"_isFastLaunch": false,
"category": "Memory Optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 512,
"name": "ml.r5.16xlarge",
"vcpuNum": 64
},
{
"_defaultOrder": 46,
"_isFastLaunch": false,
"category": "Memory Optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 768,
"name": "ml.r5.24xlarge",
"vcpuNum": 96
},
{
"_defaultOrder": 47,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 16,
"name": "ml.g5.xlarge",
"vcpuNum": 4
},
{
"_defaultOrder": 48,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 32,
"name": "ml.g5.2xlarge",
"vcpuNum": 8
},
{
"_defaultOrder": 49,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 64,
"name": "ml.g5.4xlarge",
"vcpuNum": 16
},
{
"_defaultOrder": 50,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 128,
"name": "ml.g5.8xlarge",
"vcpuNum": 32
},
{
"_defaultOrder": 51,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 256,
"name": "ml.g5.16xlarge",
"vcpuNum": 64
},
{
"_defaultOrder": 52,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 4,
"hideHardwareSpecs": false,
"memoryGiB": 192,
"name": "ml.g5.12xlarge",
"vcpuNum": 48
},
{
"_defaultOrder": 53,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 4,
"hideHardwareSpecs": false,
"memoryGiB": 384,
"name": "ml.g5.24xlarge",
"vcpuNum": 96
},
{
"_defaultOrder": 54,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 8,
"hideHardwareSpecs": false,
"memoryGiB": 768,
"name": "ml.g5.48xlarge",
"vcpuNum": 192
},
{
"_defaultOrder": 55,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 8,
"hideHardwareSpecs": false,
"memoryGiB": 1152,
"name": "ml.p4d.24xlarge",
"vcpuNum": 96
},
{
"_defaultOrder": 56,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 8,
"hideHardwareSpecs": false,
"memoryGiB": 1152,
"name": "ml.p4de.24xlarge",
"vcpuNum": 96
}
],
"colab": {
"name": "Summarization",
"provenance": []
},
"instance_type": "ml.t3.medium",
"kernelspec": {
"display_name": "Python 3 (Data Science 3.0)",
"language": "python",
"name": "python3__SAGEMAKER_INTERNAL__arn:aws:sagemaker:us-east-1:081325390199:image/sagemaker-data-science-310-v1"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"051aa783ff9e47e28d1f9584043815f5": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"0984b2a14115454bbb009df71c1cf36f": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "info",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_cbea68b25d6d4ba09b2ce0f27b1726d5",
"max": 1,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_c9de740e007141958545e269372780a4",
"value": 1
}
},
"0b7c8f1939074794b3d9221244b1344d": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"160bf88485f44f5cb6eaeecba5e0901f": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"1a65887eb37747ddb75dc4a40f7285f2": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "info",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_aa781f0cfe454e9da5b53b93e9baabd8",
"max": 1,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_50d325cdb9844f62a9ecc98e768cb5af",
"value": 1
}
},
"1aca01c1d8c940dfadd3e7144bb35718": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "info",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_940d00556cb849b3a689d56e274041c2",
"max": 1,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_fea27ca6c9504fc896181bc1ff5730e5",
"value": 1
}
},
"2361ab124daf47cc885ff61f2899b2af": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"299f4b4c07654e53a25f8192bd1d7bbd": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"2ace4dc78e2f4f1492a181bcd63304e7": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"2b34de08115d49d285def9269a53f484": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"2f5223f26c8541fc87e91d2205c39995": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"31b1c8a2e3334b72b45b083688c1a20c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_2f5223f26c8541fc87e91d2205c39995",
"placeholder": "",
"style": "IPY_MODEL_a71908883b064e1fbdddb547a8c41743",
"value": " 4.39k/? [00:00<00:00, 149kB/s]"
}
},
"3c946e2260704e6c98593136bd32d921": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_7e29a8b952cf4f4ea42833c8bf55342f",
"placeholder": "",
"style": "IPY_MODEL_6bb68d3887ef43809eb23feb467f9723",
"value": " 1063/0 [00:00<00:00, 12337.52 examples/s]"
}
},
"3f74532faa86412293d90d3952f38c4a": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"46c2b043c0f84806978784a45a4e203b": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"50615aa59c7247c4804ca5cbc7945bd7": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "Downloading: ",
"description_tooltip": null,
"layout": "IPY_MODEL_ad04ed1038154081bbb0c1444784dcc2",
"max": 7826,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_299f4b4c07654e53a25f8192bd1d7bbd",
"value": 7826
}
},
"50d325cdb9844f62a9ecc98e768cb5af": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"5781fc45cf8d486cb06ed68853b2c644": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"5cdf9ed939fb42d4bf77301c80b8afca": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"5fa26fc336274073abbd1d550542ee33": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"69caab03d6264fef9fc5649bffff5e20": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_50615aa59c7247c4804ca5cbc7945bd7",
"IPY_MODEL_fe962391292a413ca55dc932c4279fa7"
],
"layout": "IPY_MODEL_3f74532faa86412293d90d3952f38c4a"
}
},
"6bb68d3887ef43809eb23feb467f9723": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"6c1db72efff5476e842c1386fadbbdba": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_2b34de08115d49d285def9269a53f484",
"placeholder": "",
"style": "IPY_MODEL_5fa26fc336274073abbd1d550542ee33",
"value": " 28.7k/? [00:00<00:00, 571kB/s]"
}
},
"745c0d47d672477b9bb0dae77b926364": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "Downloading: 100%",
"description_tooltip": null,
"layout": "IPY_MODEL_a7204ade36314c86907c562e0a2158b8",
"max": 376971,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_d298eb19eeff453cba51c2804629d3f4",
"value": 376971
}
},
"75103f83538d44abada79b51a1cec09e": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"7c667ad22b5740d5a6319f1b1e3a8097": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"7e29a8b952cf4f4ea42833c8bf55342f": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"7fb7c36adc624f7dbbcb4a831c1e4f63": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"80e2943be35f46eeb24c8ab13faa6578": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_931db1f7a42f4b46b7ff8c2e1262b994",
"IPY_MODEL_6c1db72efff5476e842c1386fadbbdba"
],
"layout": "IPY_MODEL_de5956b5008d4fdba807bae57509c393"
}
},
"8ab9dfce29854049912178941ef1b289": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_d2a92143a08a4951b55bab9bc0a6d0d3",
"placeholder": "",
"style": "IPY_MODEL_5781fc45cf8d486cb06ed68853b2c644",
"value": " 8551/0 [00:00<00:00, 25108.88 examples/s]"
}
},
"931db1f7a42f4b46b7ff8c2e1262b994": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "Downloading: ",
"description_tooltip": null,
"layout": "IPY_MODEL_d30a66df5c0145e79693e09789d96b81",
"max": 4473,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_ccd2f37647c547abb4c719b75a26f2de",
"value": 4473
}
},
"940d00556cb849b3a689d56e274041c2": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"94b39ccfef0b4b08bf2fb61bb0a657c1": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"9a55087c85b74ea08b3e952ac1d73cbe": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_1a65887eb37747ddb75dc4a40f7285f2",
"IPY_MODEL_3c946e2260704e6c98593136bd32d921"
],
"layout": "IPY_MODEL_2361ab124daf47cc885ff61f2899b2af"
}
},
"9fbbaae50e6743f2aa19342152398186": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_94b39ccfef0b4b08bf2fb61bb0a657c1",
"placeholder": "",
"style": "IPY_MODEL_5cdf9ed939fb42d4bf77301c80b8afca",
"value": " 1043/0 [00:00<00:00, 13590.50 examples/s]"
}
},
"a14c3e40e5254d61ba146f6ec88eae25": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_1aca01c1d8c940dfadd3e7144bb35718",
"IPY_MODEL_9fbbaae50e6743f2aa19342152398186"
],
"layout": "IPY_MODEL_c4ffe6f624ce4e978a0d9b864544941a"
}
},
"a71908883b064e1fbdddb547a8c41743": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"a7204ade36314c86907c562e0a2158b8": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"aa781f0cfe454e9da5b53b93e9baabd8": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"ad04ed1038154081bbb0c1444784dcc2": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"bbee008c2791443d8610371d1f16b62b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "Downloading: ",
"description_tooltip": null,
"layout": "IPY_MODEL_0b7c8f1939074794b3d9221244b1344d",
"max": 1586,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_7fb7c36adc624f7dbbcb4a831c1e4f63",
"value": 1586
}
},
"c4ffe6f624ce4e978a0d9b864544941a": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"c9de740e007141958545e269372780a4": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"cbea68b25d6d4ba09b2ce0f27b1726d5": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"ccd2f37647c547abb4c719b75a26f2de": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"d22ab78269cd4ccfbcf70c707057c31b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_75103f83538d44abada79b51a1cec09e",
"placeholder": "",
"style": "IPY_MODEL_e35d42b2d352498ca3fc8530393786b2",
"value": " 377k/377k [00:00<00:00, 703kB/s]"
}
},
"d298eb19eeff453cba51c2804629d3f4": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"d2a92143a08a4951b55bab9bc0a6d0d3": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"d30a66df5c0145e79693e09789d96b81": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"d426be871b424affb455aeb7db5e822e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_745c0d47d672477b9bb0dae77b926364",
"IPY_MODEL_d22ab78269cd4ccfbcf70c707057c31b"
],
"layout": "IPY_MODEL_160bf88485f44f5cb6eaeecba5e0901f"
}
},
"dd5997d01d8947e4b1c211433969b89b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_bbee008c2791443d8610371d1f16b62b",
"IPY_MODEL_31b1c8a2e3334b72b45b083688c1a20c"
],
"layout": "IPY_MODEL_2ace4dc78e2f4f1492a181bcd63304e7"
}
},
"de5956b5008d4fdba807bae57509c393": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"e35d42b2d352498ca3fc8530393786b2": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"f6253931d90543e9b5fd0bb2d615f73a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_0984b2a14115454bbb009df71c1cf36f",
"IPY_MODEL_8ab9dfce29854049912178941ef1b289"
],
"layout": "IPY_MODEL_051aa783ff9e47e28d1f9584043815f5"
}
},
"fe962391292a413ca55dc932c4279fa7": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_46c2b043c0f84806978784a45a4e203b",
"placeholder": "",
"style": "IPY_MODEL_7c667ad22b5740d5a6319f1b1e3a8097",
"value": " 28.7k/? [00:00<00:00, 652kB/s]"
}
},
"fea27ca6c9504fc896181bc1ff5730e5": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
}
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}